Bacterial protein production

combined with protein refold

Bacterial protein production

combined with protein refolding and purification is a conventional procedure to obtain active neurotrophic factors; however, the procedure is time consuming and appropriate protein refolding in vitro is sometimes unpredictable. Here we examined three distinct cell-free translation systems: reticulocyte lysate, Hela cell lysate and wheat germ extract, which may allow us to produce biologically active factors in a single tube. Taking type-I neuregulin-1 beta3 as an example, we produced neuregulin-1 protein from its mRNAs flanked by Cap nucleotide and/or internal ribosome entry site (IRES) and compared the yields and biological activity VX-689 of translation products from these systems. The protein yield from IRES+ mRNA was highest in the Hela cell-free system, while background translation was lowest in the wheat germ system. The biological activity of both translation products was modest or negligible, however. Neuregulin-1 protein was produced in reticulocyte lysate at yields of 19 pmol/mL (similar to 500 ng/mL); furthermore,

it was potent at phosphorylating ErbB4 receptor and able to bind to heparin sulfate. These results demonstrate that the reticulocyte lysate translation system produces active neurotrophic factors in vitro and is useful for radiolabeling or preliminary AZD0530 assessment of novel neurotrophic factors and their variants. (C) 2011 Elsevier Ireland Ltd. All rights reserved.”
“In the last decade, gene expression studies of kidney transplants provided an opportunity to better understand the development and regulation of kidney graft rejection. This review outlines the progress in the definition of biomarkers of rejection and, above (-)-p-Bromotetramisole Oxalate all, concentrates on studies of the molecular phenotype of rejection. This phenotype, rather than morphological characterization, may be critical for assessing the ongoing processes in the

graft and for the outcome prediction. Copyright (C) 2011 S. Karger AG, Basel”
“AMPA receptors and NMDA receptors are the main subtypes of ionotropic glutamate receptors in the vertebrate central nervous system. Accumulating evidence demonstrates that two serine sites, S831 and S845, on the AMPA receptor GluA1 subunit, are phosphorylation-regulated and profoundly involved in NMDA receptor-dependent synaptic plasticity. On the other hand, recent studies have revealed distinct functional consequences of activating synaptic or extrasynaptic NMDA receptors, or of activating GluN2A- or GluN2B-containing NMDA receptors. Therefore, it is essential to determine how phosphorylation of the GluA1 at S831 and S845 is regulated by NMDA receptor subpopulations. In this study, we demonstrated transiently increased phosphorylation of GluA1 at S831 and persistently decreased phosphorylation of GluA1 at S845 by bath application of NMDA to hippocampal slices from rats.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>