assamicum, P. recumbens, and P. effusum. Molecular differences were detected among Persicaria barbata collected from different geographical locations of India, although these were not differentiated at the morphological level.”
“Epidemiological studies have shown an inverse relationship between consumption of fruits AICAR molecular weight and vegetables and the risk of cardiovascular disease. Phytochemicals are non-nutritional chemical compounds found in small quantities in fruits and vegetables
with known health benefits. Among them, organosulfides are present mainly in garlic and onion characterized by their antioxidant and anti-inflammatory properties, and isothiocyanates in cruciferous vegetables have anticarcinogenic effects WH-4-023 inhibitor in experimental models. In this review, we are focusing on the main biological studies regarding the beneficial effect of organosulfur compounds on their protection against cardiovascular disease. (C) 2010 Elsevier Ltd. All rights reserved.”
“Plant secondary metabolites are known to facilitate interactions with a variety of beneficial and detrimental organisms, yet the contribution of specific metabolites to interactions with fungal pathogens is poorly understood. Here we show that, with respect to aliphatic glucosinolate-derived isothiocyanates, toxicity against the pathogenic ascomycete Sclerotinia sclerotiorum depends on side chain structure. Genes associated
with the formation of the secondary metabolites camalexin and glucosinolate were induced in Arabidopsis thaliana leaves challenged with the necrotrophic pathogen S. sclerotiorum. Unlike S. sclerotiorum, the closely related ascomycete
Botrytis cinerea was not identified to induce genes associated with aliphatic glucosinolate biosynthesis in pathogen-challenged leaves. Mutant plant lines deficient in camalexin, indole, or aliphatic glucosinolate Fosbretabulin mouse biosynthesis were hypersusceptible to S. sclerotiorum, among them the myb28 mutant, which has a regulatory defect resulting in decreased production of long-chained aliphatic glucosinolates. The antimicrobial activity of aliphatic glucosinolate-derived isothiocyanates was dependent on side chain elongation and modification, with 8-methylsulfinyloctyl isothiocyanate being most toxic to S. sclerotiorum. This information is important for microbial associations with cruciferous host plants and for metabolic engineering of pathogen defenses in cruciferous plants that produce short-chained aliphatic glucosinolates.”
“NAC proteins, which are plant-specific transcription factors, have been identified to play important roles in plant response to stresses and in plant development. The full-length cDNAs that encode 2 putative NAC proteins, designated as MmATAF1 and MmNAP, respectively, were cloned from Mikania micrantha by rapid amplification of cDNA ends.