Additional subboundaries give their contributions to the diffusio

Additional subboundaries give their contributions to the diffusion flow after 20 to 30 cycles of γ-α-γ transformations. Diffusion

coefficients were too high – more than 103 times higher compared to the values obtained by extrapolation to high temperature data at temperatures below 0.5 of melting point. Data in this work also show high diffusion transparency of fragments’ subboundaries of nanoscale level (nanofragments) due to dislocation nature of small-angle boundaries. We might probably determine the effect of dislocations and additional subboundaries in reverted f.c.c. austenite and b.c.c. martensite onto the total diffusion flow if we studied alloy diffusion characteristics after different numbers of γ-α-γ cycles. It is known that dislocation density increases by three orders after the first γ-α-γ transformation. With increased number of such cycles, dislocation density remains almost unchanged although the total selleck chemical length of additional selleckchem subboundaries significantly increases [17, 18]. The up-to-date ability to create ultrafine and

nanocrystalline structures of metallic materials opens new prospects for further intensification methods of chemical and thermal treatment (carburizing, nitriding, metallization) due to a significant acceleration of diffusion. Thus, it follows from this work that temperature of the surface metallization of metastable iron-nickel alloy can be PF-4708671 price reduced by several hundred degrees. Previously, it has been found [6] that anomalies of grain-boundary diffusion occur in new classes of nanostructured materials created by means of severe plastic deformations. This means that diffusion coefficients increase by several orders and diffusion energy activation is reduced almost by half. Grain-boundary diffusion Obeticholic Acid plays a significant role in the formation of structure-sensitive properties. The authors of [6] believe that this type of diffusion determines significantly the course

of diffusion-controlled processes such as recrystallization, high-temperature plastic deformation, superplastic fluidity, temperature-dependent internal friction, and grain-boundary deformation under conditions of fatigue. Diffusion mobility increase of substitution atoms in reverted austenite as the result of multiple martensitic transformation is comparable with the one which occurs as the result of severe plastic deformation. Conclusions As the result of multiple martensitic γ-α-γ transformations, diffusion mobility of nickel and iron atoms in reverted austenite of Fe-31.7%Ni-0.06%C alloy is significantly increased. The diffusion coefficients increased, and at the temperature of 400°C, they corresponded to stationary diffusion coefficients at 900°C. Two factors influenced the diffusion acceleration: a three-order increase of the dislocation density that reached the value of 5 × 1011 cm-2, and additional low-angle subboundaries of disoriented nanofragments with deformation twins subboundaries formed as the result of γ-α-γ cycles.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>