Advances in the fabrication of extremely thin thermoelectric devices, less than a few hundred microns thick, has raised the possibility of incorporating an implantable cooling unit into a closed
loop seizure detection and treatment system.”
“During learn more human immunodeficiency virus type 1 (HIV-1) infection, patients develop various levels of neutralizing antibody (NAb) responses. In some cases, patient sera can potently neutralize diverse strains of HIV-1, but the antibody specificities that mediate this broad neutralization are not known, and their elucidation remains a formidable challenge. Due to variable and nonneutralizing determinants on the exterior envelope glycoprotein (Env), nonnative Env protein released from cells, and the glycan shielding that assembles in the context of the quaternary structure of the functional spike, HIV-1 Env elicits a myriad of binding antibodies. However, few of these antibodies can neutralize circulating viruses. We present a systematic analysis of the NAb specificities of a panel of HIV-1-positive sera, using methodologies that identify both conformational and continuous neutralization determinants on the HIV-1 Env protein. Characterization of sera included selective adsorption with native gp120 and specific point mutant variants, chimeric virus analysis, and peptide inhibition of viral neutralization. The gp120 protein was the major
neutralizing determinant for most sera, although not all neutralization activity against all viruses could be identified. In some broadly neutralizing Savolitinib clinical trial sera, the gp120-directed neutralization mapped to the CD4 binding region of gp120. In addition, we found Avelestat (AZD9668) evidence that regions of the gp120 coreceptor binding site may also be a target of neutralizing activity. Sera displaying limited neutralization breadth were mapped to the immunogenic V3 region of gp120. In a subset of sera, we also identified NAbs directed against the conserved, membrane-proximal external region of gp41. These data allow a more detailed understanding of
the humoral responses to the HIV-1 Env protein and provide insights regarding the most relevant targets for HIV-1 vaccine design.”
“The NS2B cofactor is critical for proteolytic activation of the flavivirus NS3 protease. To elucidate the mechanism involved in NS2B-mediated activation of NS3 protease, molecular dynamic simulation, principal component analysis, molecular docking, mutagenesis, and bioassay studies were carried out on both the dengue virus NS3pro and NS2B-NS3pro systems. The results revealed that the NS2B-NS3pro complex is more rigid than NS3pro alone due to its robust hydrogen bond and hydrophobic interaction networks within the complex. These potent networks lead to remodeling of the secondary and tertiary structures of the protease that facilitates cleavage sequence recognition and binding of substrates.