Here, we describe a case study of cetuximab, which has been marketed since 2004. Biosimilar versions of the product are now in the pipelines of numerous therapeutic antibody biosimilar developers. We applied a combination of intact, middle-down, middle-up and bottom-up electrospray ionization and matrix assisted laser desorption ionization I��B/IKK inhibitor mass spectrometry techniques to characterize the amino acid sequence and major post-translational modifications
of the marketed cetuximab product, with special emphasis on glycosylation. Our results revealed a sequence error in the reported sequence of the light chain in databases and in publications, thus highlighting the potency of mass spectrometry to establish correct antibody sequences. We were also able to achieve a comprehensive identification of cetuximab’s glycoforms and glycosylation profile assessment on both Fab and Fc domains. Taken together, the reported approaches and data form a solid framework for the comparability of antibodies and their biosimilar candidates that
could be further applied to routine structural assessments of these and other antibody-based products.”
“Two neolignans, named callislignan learn more A and B together with known C-methyl-flavonoids, a lignan and pentacyclic triterpenoid esters were isolated from the leaves of Callistemon lanceolatus. Their structures were characterized by spectroscopic methods. Callislignan A and B had antibacterial activity against Staphylococcus aureus ATCC25923 and MRSA SK1 with callislignan B having an MIC of 8 mu g/mL. (C) 2011 Phytochemical Society of Europe. Published by Elsevier B. V. All
rights reserved.”
“A point mutation from guanine (G) to adenine (A) at nucleotide position 1081 in the hemagglutinin-neuraminidase (HN) gene has been associated with neurovirulence of Urabe AM9 mumps virus vaccine. This mutation corresponds to a glutamic acid (E) to lysine (K) change at position 335 in the HN glycoprotein. We have experimentally demonstrated that two variants of Urabe AM9 strain Stem Cells & Wnt inhibitor (HN-A(1081) and HN-G(1081)) differ in neurotropism, sialic acid-binding affinity and neuraminidase activity. In the present study, we performed a structure-function analysis of that amino acid substitution; the structures of HN protein of both Urabe AM9 strain variants were predicted. Based on our analysis, the E/K mutation changes the protein surface properties and to a lesser extent their conformations, which in turn reflects in activity changes. Our modeling results suggest that this E/K interchange does not affect the structure of the sialic acid binding motif; however, the electrostatic surface differs drastically due to an exposed short alpha helix. Consequently, this mutation may affect the accessibility of HN to substrates and membrane receptors of the host cells.