In HCT116 cells with constitutive E1B-55K expression, the activat

In HCT116 cells with constitutive E1B-55K expression, the activation of p53 target genes such as the p21, Mdm2, and Puma genes was attenuated, despite markedly elevated p53 protein levels. HCT116 cells with E1B-55K expression displayed a cell cycle profile similar to that of the isogenic HCT116p53(-/-) cells, including unhindered LDK378 price S-phase entry despite DNA damage. Surprisingly, E1B-55K-expressing cells were more sensitive to drug treatment than parental cells. Compared to HCT116 cells, HCT116p53(-/-) cells were more susceptible to both doxorubicin

and etoposide, and E1B-55K expression had no effects on drug treatment. E1B-55K expression increased the rate of cell proliferation in HCT116 but not in HCT116p53(-/-) cells. Thus, deregulation of p53-mediated cell cycle control by E1B-55K probably underlies sensitization of HCT116 cells to anticancer drugs. Consistently,

E1B-55K expression in A549, A172, and HepG2 cells, all containing wild-type (wt) p53, also enhanced etoposide-induced cytotoxicity, whereas in p53-null H1299 cells, E1B-55K had no effects. We generated several E1B-55K mutants with mutations at positions occupied by the conserved Phe/Trp/His residues. Most of these mutants showed no or reduced binding to Selisistat cell line p53, although some of them could still stabilize p53, suggesting that binding might not be essential for E1B-55K-induced p53 stabilization. Despite heightened p53 protein levels in cells expressing certain E1B-55K mutants, p53 activity was largely suppressed. Furthermore, most of these E1B-55K mutants could sensitize HCT116 cells to etoposide and doxorubicin. These results indicate that E1B-55K might have utility for enhancing chemotherapy.”
“After reading many 2-DE-based articles featuring lists of the differentially expressed proteins, one starts experiencing a disturbing deja vu. The same proteins Fluorometholone Acetate seem to predominate regardless of the experiment, tissue or species. To quantify the occurrence of individual differentially expressed proteins

in 2-DE experiment reports, we compiled the identities of differentially expressed proteins identified in human, mouse, and rat tissues published in three recent volumes of Proteomics and calculated the appearance of the most predominant proteins in the dataset. The most frequently identified protein is a highly abundant glycolytic enzyme enolase 1, differentially expressed in nearly every third experiment on both human and rodent tissues. Heat-shock protein 27 (HSP27) and heat-shock protein 60 (HSP60) were differentially expressed in about 30 percent of human and rodent samples, respectively. Considering protein families as units, keratins and peroxiredoxins are the most frequently identified molecules, with at least one member of the group being differentially expressed in about 40 percent of all experiments. We suggest that the frequent identification of these proteins must be considered in the interpretation of any 2-DE studies.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>