“
“Mutations of the neurofibromin gene (NF1) cause neurofibromatosis
type 1 (NF1), a disease in which learning disabilities are common. Learning deficits also are observed in mice with a heterozygous mutation of Nf1 (Nf1(+/-)). Dysregulation of regulated neurotransmitter release has been observed in Nf1(+/-) mice. However, the role of presynaptic voltage-gated Ca(2+) channels mediating this release has not been investigated. We investigated whether Ca(2+) currents and transmitter release were affected by reduced neurofibromin in Nf1(+/-) mice. Hippocampal Ca(2+) current density was greater in neurons from Nf1(+/-) mice and a greater fraction of Ca(2+) currents was activated at less depolarized potentials. In addition, release of the excitatory neurotransmitter, glutamate, was increased in neuronal cortical cultures from Nf1(+/-) mice. Dendritic complexity and axonal length were also increased Screening Library manufacturer in neurons Nf1(+/-) mice compared to wild-type neurons, linking loss of neurofibromin to developmental changes in hippocampal axonal/cytoskeletal dynamics. Collectively, these results show that altered Ca(2+)
channel density and transmitter release, along with increased axonal growth may account for the abnormal nervous system functioning in CX-6258 inhibitor NF1.”
“Sugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production.
Physical (ultrasound and thermal) pretreatment methods were tested and combined with enzymatic hydrolysis by cellulase and pectinase to evaluate the most efficient strategy. The optimized hydrolysis process was combined with a fermentation step using a Saccharomyces cerevisiae strain for ethanol production in a single-tank bioreactor. selleck chemicals llc Optimal sugar beet pulp conversion was achieved at a concentration of 60 g/l (39% of dry weight) and a bioreactor stirrer speed of 960 rpm. The maximum ethanol yield was 0.1 g ethanol/g of dry weight (0.25 g ethanol/g total sugar content), the efficiency of ethanol production was 49%, and the productivity of the bioprocess was 0.29 g/l.h, respectively.”
“Synthesis, characterization and investigation of antiproliferative activity of eight thiazole-based nitrogen mustard against human cancer cells lines (MV4-11, A549, HCT116 and MCF-7) and normal mouse fibroblast (BALB/3T3) are presented. Their structures were determined using NMR, FAB MS, HRMS and elemental analyses. Among the derivatives, 3a, 3b, 3e and 3h were found to exhibit high activity against human leukemia MV4-11 cells with IC50 values of 0.634-3.61 mu g/ml. The cytotoxic activity of compound 3a against BALB/3T3 cells is up to 40 times lower than against cancer cell lines.