(C) 2013 AIP Publishing LLC “
“C4b-binding protein (C4BP) is

(C) 2013 AIP Publishing LLC.”
“C4b-binding protein (C4BP) is known as one of the circulating complement regulators that prevents excessive activation of the host-defense complement system. We have reported previously Src inhibitor that C4BP is expressed abundantly in the rodent epididymis, one

of the male reproductive organs connecting the testis and vas deferens, where immature spermatozoa acquire their motility and fertilizing ability during their transit through the duct. Epididymal C4BP (EpC4BP) is synthesized androgen-dependently by the epithelial cells, secreted into the lumen, and bound to the outer membrane of the passing spermatozoa. In this study, we found that EpC4BP is secreted as a large oligomer, similar to the serum C4BP, but is digested during the epididymal transit and is almost lost from both the luminal fluid and the sperm surface in the vas deferens. C59 Wnt mw Such a processing pattern

is not known in serum C4BP, suggesting that EpC4BP and serum C4BP might have different functional mechanisms, and that there is a novel function of EpC4BP in reproduction. In addition, the disappearance of EpC4BP from the sperm surface prior to ejaculation suggests that EpC4BP works only in the epididymis and would not work in the female reproductive tract to protect spermatozoa from complement attack. Next, we generated C4BP-deficient (C4BP-/-) mice to examine the possible role of EpC4BP in reproduction. However, the C4BP-/- mice were fertile and no significant differences were observed between the C4BP-/- and wild-type mouse spermatozoa in terms this website of morphology, motility, and rate of the spontaneous acrosome reaction. These results suggest that EpC4BP is involved in male reproduction, but not essential for sperm maturation. (C) 2014 Elsevier GmbH.

All rights reserved.”
“The inv(16)(p13q22)/t(16;16)(p13;q22) in acute myeloid leukemia results in multiple CBFB-MYH11 fusion transcripts, with type A being most frequent. The biologic and prognostic implications of different fusions are unclear. We analyzed CBFB-MYH11 fusion types in 208 inv(16)/t(16; 16) patients with de novo disease, and compared clinical and cytogenetic features and the KIT mutation status between type A (n = 182; 87%) and non-type A (n = 26; 13%) patients. At diagnosis, non-type A patients had lower white blood counts (P = .007), and more often trisomies of chromosomes 8 (P = .01) and 21 (P < .001) and less often trisomy 22 (P = .02). No patient with non-type A fusion carried a KIT mutation, whereas 27% of type A patients did (P = .002). Among the latter, KIT mutations conferred adverse prognosis; clinical outcomes of non-type A and type A patients with wild-type KIT were similar. We also derived a fusion-type-associated global gene-expression profile.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>