Results and discussion Before the fabrication of metal/n-GaN contacts, structural and morphological characterizations
of epitaxial layers have been see more done. The X-ray diffraction pattern of the GaN epitaxial layer using Cu-Kα radiation is shown below in Figure 2a. The X-ray diffraction pattern was taken in bulk mode. The orientation of the epitaxial layer was observed to be along the (002) which confirms the growth of the epitaxial layer along the [0001] direction having a hexagonal (wurtzite) crystal structure. Additional diffraction peaks from (102), (004), and (203) reflection planes of hexagonal GaN were also observed. The sharp diffraction peaks (FWHM value 432 arc sec for (002)) reveal the reasonably good crystalline quality of the GaN epitaxial layer [13]. The lattice constants ‘a’ and ‘c’ were found to be 0.320 and 0.518 nm, respectively, which matched well with the standard cell parameter values as given in JCPDS card 02–1078. GaN epitaxial layers were also examined under an atomic force
microscope (AFM) in the contact mode to measure the topography of the surface. Figure 2b shows the AFM images in a 2D view for the pristine samples. The surface area scanned was 10 × 10 μm2. The RMS roughness of the surfaces is around 1 nm for all samples. The result of the AFM measurement shows an overall smooth GaN surfaces. These samples have an average dislocation density value of about 5 × 108 cm-2, which is acceptable for GaN epilayers but poor as compared to Si and GaAs epilayers. VX-770 Figure 2 X-ray diffraction spectrum (a) and AFM image (b) of the GaN epitaxial layer. The asterisk ‘*’ indicates peaks from sapphire substrate. Electrical characterization of Schottky barrier devices was carried out in the temperature
range of 100 to Thymidine kinase 340 K measured at a temperature interval of 40 K. Figure 3 shows the experimental semilog forward and reverse bias I-V characteristics of the Pt/n-GaN Schottky barrier diodes (SBD). It should be mentioned here that for analysis, we have used diodes with 384-μm diameter and have almost identical electrical properties. The characteristics shown here demonstrate an average trend which was determined for a group of diodes. The current–voltage characteristics of SBD are given by the thermionic emission theory [14, 15]. For bias voltage V ≥ 3kT/q, the conventional diode equation is (1) (2) Figure 3 Semilog forward and reverse I-V characteristics for Pt/n-GaN Schottky diode at 100 to 340 K. Here, A** is the effective Richardson constant, ϕ ap is the apparent or measured barrier height, n is the ideality parameter, A is the diode area, and the other symbols have their usual meanings. Since image force is a very weak function of applied voltage, it could also be neglected [14–18].