“We report


“We report Selleckchem Screening Library an experimental investigation on the sintering process induced in fumed silica powders by isochronal thermal treatments at T=1270 K. Three types of fumed silica are considered, consisting of amorphous SiO2 (alpha-SiO2) particles with mean diameters 7, 14, and 40 nm. The study is performed by atomic force microscopy (AFM), to follow the morphological changes, and by Raman scattering, to obtain information on the concomitant structural modifications. The former method indicates that the sintering process proceeds by aggregation of single particles into larger grains, whose sizes increase with the thermal

treatment duration. Furthermore, for each fumed silica type considered, the quantitative analysis of the AFM images shows that the grain growth process takes place approximately at constant rate for thermal treatment durations up to 290 h. Nevertheless, the value of

the grain growth rate is sensitive to the system properties. In fact, it is found to increase with decreasing the particle mean diameter, giving a strong quantitative evidence of the size-dependence of the sintering process. On the other hand, Raman measurements indicate that the structure of the as-received fumed silica nanoparticles is significantly modified with respect to that of ordinary bulk alpha-SiO2, in agreement with previous experimental evidences. However, it rapidly relaxes upon thermal treatment MG-132 mw at T=1270 K and its characterizing features are almost completely lost after treatment for about 80 h. Finally, the comparison of AFM selleck inhibitor and Raman data shows that the nanoparticles structure are completely relaxed (resembling that of bulk alpha-SiO2) when the grains formed by thermal treatment reach diameters greater than about 43 nm, indicating that it represents the

characteristic size above which the effects of spatial confinement on the structure of the material become almost negligible. (C) 2010 American Institute of Physics. [doi:10.1063/1.3481670]“
“Among 120 simple sequence repeat (SSR) markers, 23 polymorphic markers were used to identify the segregation ratio in 320 individuals of an F(2) rice population derived from Pongsu Seribu 2, a resistant variety, and Mahsuri, a susceptible rice cultivar. For phenotypic study, the most virulent blast (Magnaporthe oryzae) pathotype, P7.2, was used in screening of F(2) population in order to understand the inheritance of blast resistance as well as linkage with SSR markers. Only 11 markers showed a good fit to the expected segregation ratio (1:2:1) for the single gene model (d.f. = 1.0, P < 0.05) in chi-square (chi(2)) analyses. In the phenotypic data analysis, the F(2) population segregated in a 3:1 (R:S) ratio for resistant and susceptible plants, respectively. Therefore, resistance to blast pathotype P7.2 in Pongsu Seribu 2 is most likely controlled by a single nuclear gene.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>