Further NO-defending mechanisms of NU7026 solubility dmso Giardia To test whether the parasite G. intestinalis also uses other mechanisms than consuming arginine and changing iNOS expression to combat the antimicrobial host-NO response, the expression of the NO-detoxifying enzyme flavohemoglobin [13, 14] (FlHb) was assessed. Giardia trophozoites were interacted with host IECs that were previously induced to produce NO by addition of cytokines (as described above). Compared to non-stimulated IEC controls, Giardia trophozoites
up-regulated FlHb expression on the RNA and protein level (Figure 5) when the IECs produced NO. This could provide another layer of NO protection for the parasite (Figure 1). Figure 5 Giardia up-regulates flavohemoglobin PF-4708671 research buy upon nitric oxide (NO) stress. Human intestinal epithelial cells (HCT-8) were stimulated for NO production by
addition of cytokines (TNF-α (200 ng/mL), IL-1α (200 ng/mL), IFN-γ (500 ng/mL)). Giardia trophozoites of the isolate WB were added to the NO-producing host cells and to control cells after 40 h. Samples were measured for expression of the NO-detoxifying protein flavohemoglobin (FlHb) at indicated time points. A, Upon interaction with NO-producing Z-VAD-FMK mw cells FlHb was induced in trophozoites on the RNA level compared to the control gene GL50803_17364 as assessed by qPCR in technical quadruplicates. This highly significant difference is indicated by asterisks. B, Western blot detecting the expression of FlHb and the control protein Tat1 in Giardia upon interaction with HCT-8 cells with and without NO-induction. C, Quantification of the Western blot bands (B) by image J software clearly shows the induction of FlHb protein in Giardia trophozoites
upon interaction with NO-induced host cells. The results are representative for similar results obtained by three independent experiments. Proliferation of arginine-deprived PBMC To assess effects of the local arginine-deprivation caused by Giardia on infiltrating lymphocytes, peripheral blood mononuclear cells (PBMCs) were incubated in a concentration series of GiADI and stimulated by T cell activating anti-CD3 and anti-CD28 antibodies. The GiADI used for this experiment was produced in and purified from Giardia trophozoites and exhibited in vitro arginine-degrading activity as earlier described [7]. There was a dose-dependent repression of T-cell specific PBMC selleck inhibitor proliferation upon addition of GiADI to PBMCs that reached full effect at 5 μg/mL GiADI (data not shown). This GiADI-dependent repression of PBMC proliferation after T-cell specific stimulation could be reduced by the addition of arginine to 0.4 mM, and partially also by citrulline to 0.4 mM (Figure 6). Respective buffer and denatured protein controls showed no significant inhibitory effects (Figure 6). Figure 6 Giardia ADI reduces PBMC proliferation through arginine consumption. The secreted Giardia protein ADI (GiADI) was expressed and purified from Giardia WB trophozoites.