pseudomallei [10] There is extensive chromosomal synteny between

pseudomallei [10]. There is extensive chromosomal synteny between B. thailandensis and B. pseudomallei, although some virulence-associated genes which are present in B. pseudomallei are absent in B. thailandensis [12]. Both

B. pseudomallei and B. thailandensis are able to invade and grow in a range of phagocytic AZD5153 and non-phagocytic cells, forming Cell Cycle inhibitor plaques or multinucleated giant cells [13, 14]. However, there is also evidence that the behaviour of B. pseudomallei and B. thailandensis differs in different cell lines. In A549 and human dendritic cells, B. pseudomallei has been shown to be more invasive than B. thailandensis, but there were no reported differences in the growth rate within cells. In contrast, in human macrophages, differences in intracellular growth rates have been reported [14]. Collectively, these findings have suggested that B. thailandensis could be used as a model to study certain aspects of the intracellular lifestyle of B. pseudomallei in cell culture systems [15]. The behaviour of B. oklahomensis in cell culture models is CX-6258 cell line not known. The value of whole animal or plant infection models, which use B. thailandensis or B. oklahomensis in place of B. pseudomallei, is much less clear. Isolates of B. thailandensis and B. oklahomensis that have been tested are considered to be highly attenuated or avirulent in BALB/c mice, with lethal doses for most isolates in excess of 107 cfu by the i.p. route [16]. However,

using intranasal challenge models, doses of greater than 104 cfu of B. thailandensis are reportedly able to kill mice and replicate B. pseudomallei disease phenotypes, although even in this model it is clear that B. thailandensis is much less virulent than B. pseudomallei [7]. There has been significant interest in the development of alternative infection models which avoid the use of mammals but also reflect the differences in virulence of species and isolates seen in mice. The Caenorhabditis elegans [17]

or tomato plant [18] infection models were not able to distinguish between B. pseudomallei and B. thailandensis, and in C. elegans, B. thailandensis was the most virulent Adenosine triphosphate [17]. Galleria mellonella (wax moth) larvae have previously been reported as susceptible to infection with B. pseudomallei, and a single B. thailandensis strain tested was reportedly less virulent [19]. This finding suggests that G. mellonella larvae may be a suitable host species for discerning differences in virulence. Our aim was to determine whether differences in the virulence of B. pseudomallei, B. thailandensis and B. oklahomensis isolates could be reliably determined in macrophage and G. mellonella larvae infection models. Results B. pseudomallei, B. thailandensis or B. oklahomensis are internalised with similar efficiencies into J774A.1 macrophages For this study we have selected a range of B. pseudomallei, B. thailandensis or B. oklahomensis isolates of known ancestry.

EMBO J 1999, 18:6934–6949 PubMedCrossRef 15 Paek K-H, Walker GC:

EMBO J 1999, 18:6934–6949.PubMedCrossRef 15. Paek K-H, Walker GC: Escherichia coli dnaK null mutant are inviable at high temperature. J Bacteriol 1987, Tubastatin A research buy 169:283–290.PubMed 16. Kanemori M, Nishihara K, Yanagi H, Yura T: Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of σ 32 and abnormal

proteins in Escherichia coli . J Bacteriol 1997, 179:7219–7225.PubMed 17. Katz C, Rasouly A, Gur E, Shenhar Y, Biran D, Ron EZ: Temperature-dependent proteolysis as a control element in Escherichia coli metabolism. Res Microbiol 2009, 160:684–686.PubMedCrossRef 18. Ron EZ, Alajem S, Biran D, Grossman N: Adaptation of Escherichia coli to elevated temperatures: the metA gene product is a heat shock protein. Antonie Van Leeuwenhoek 1990, 58:169–174.PubMedCrossRef 19. Kumar S, Tsai C-J, Nissinov R: Factors enhancing protein thermostability. Protein Eng 2000, CX-6258 cell line 13:179–191.PubMedCrossRef 20. Manning M, Colon W: Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward β-sheet structure. Biochemistry 2004, 43:11248–11254.PubMedCrossRef 21. Sanchez-Ruiz JM:

Protein kinetic stability. Biophys Chem 2010, 148:1–15.PubMedCrossRef 22. Cunningham EL, Jaswal SS, Sohl JL, Agard DA: Kinetic stability as a mechanism for protease longevity. Proc Natl Acad Sci USA 1999, 96:11008–11014.PubMedCrossRef 23. Bukau B, Walker GC: Cellular defects caused by deletion of the Escherichia coli dnaK gene 4SC-202 molecular weight indicate roles for heat shock protein in normal metabolism. J Bacteriol 1989, 171:2337–2346.PubMed 24. Kadonosono T, Chatani E, Hayashi R, Moriyama H, Ueki T: Minimization of cavity size ensures protein stability and folding: structures of Phe46-replaced bovine pancreatic RNase A. Biochemistry 2003, 42:10651–10658.PubMedCrossRef 25. Lee C, Park S-H, Lee M-Y, Yu M-H: Regulation of protein function by native metastability. Proc Natl Acad Sci USA 2000, 97:7727–7731.PubMedCrossRef

oxyclozanide 26. Chakravarty S, Bhinge A, Varadarajan R: A procedure for detection and quantification of cavity volumes in proteins. J Biol Chem 2002, 277:31345–31353.PubMedCrossRef 27. Sadana A: Bioseparation of proteins. In Unfolding/folding and validation, volume 1. Edited by: Satinder A. San Diego: Academic; 1998:15. 28. De Lorenzo V: Genes that move the window of viability of life: lessons from bacteria thriving at the cold extreme: mesophiles can be turned into extremophiles by substituting essential genes. Bioessays 2011, 33:38–42.PubMedCrossRef 29. Mongold JA, Bennett AF, Lenski RE: Evolutionary adaptation to temperature VII. Extension of the upper thermal limit of Escherichia coli . Evolution 1999, 53:386–394.CrossRef 30. Park K-S, Jang Y-S, Lee H, Kim J-S: Phenotypic alteration and target gene identification using combinatorial libraries of zinc finger proteins in prokaryotic cells.